Some topological indices of nanostar dendrimers

M. GHORBANI*, A. MOHAMMADI, F. MADADI
Department of Mathematics, Faculty of Science, Shahid Rajaee, Teacher Training University, Tehran, 16785-136, I. R. Iran

The $G A_{4}$ index is a topological index was defined as $G A_{4}(G)=\sum_{u v \in E} \frac{2 \sqrt{\varepsilon(u) \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)}$, in which eccentricity of vertex u denoted by $\varepsilon(u)$. Recently some classes of $G A$ index were introduced. In this paper we compute the $G A_{4}$ index of nanostar dendrimers.
(Received August 12, 2010; accepted November 10, 2010)
Keywords: Topological index, Nanostar dendrimer

1. Introduction

By a graph means a set of vertices and edges which denotes by $V(G)$ and $E(G)$, respectively. If e is an edge of G, connecting the vertices u and v, then we write $e=u v$ and say " u and v are adjacent". A connected graph is a graph such that there is a path between all pairs of vertices. Throughout this paper graph means simple connected graph.

Molecular descriptors play a prominent map in chemistry, pharmacology, etc. Among them, topological indices are very important [1]. Let Σ be the class of finite graphs. A topological index is a function Top from \sum into real numbers with this property that $\operatorname{Top}(G)=\operatorname{Top}(H)$, if G and H are isomorphic. Obviously, the number of vertices and the number of edges are topological index. If $x, y \in V(G)$ then the distance $d_{G}(x, y)$ between x and y is defined as the length of any shortest path in G connecting x and y. For a vertex u of $V(G)$ its eccentricity $\varepsilon(u)$ is the largest distance between u and any other vertex v of $G, \quad \varepsilon(u)=\max _{v \in V(G)} d_{G}(u, v)$. The maximum eccentricity over all vertices of G is called the diameter of G and denoted by $D(G)$. The eccentric connectivity index [2-6] $\xi(G)$ of a graph G is defined as

$$
\xi(G)=\sum_{u \in V(G)} \operatorname{deg}_{G}(u) \varepsilon(u),
$$

where, $\operatorname{deg}_{G}(u)$ denotes the degree of vertex u in G, i. e., the number of its neighbors in G.

The geometric - arithmetic index (GA) considered by Vukičević and Furtula [7] as

$$
G A(G)=\sum_{u v \in E} \frac{2 \sqrt{\mathrm{~d}_{G}(u) \mathrm{d}_{G}(v)}}{\mathrm{d}_{G}(u)+\mathrm{d}_{G}(v)} .
$$

Fath-Tabar et al. [8] defined the second version of $G A$ index as follows:

$$
G A_{2}(G)=\sum_{u v \in E} \frac{2 \sqrt{n_{u} n_{v}}}{n_{u}+n_{v}},
$$

where n_{u} is the number of vertices of G lying closer to the vertex u than to the vertex v. The third member of this class was considered by Zhou et al. [9] as

$$
G A_{3}(G)=\sum_{u v \in E} \frac{2 \sqrt{m_{u} m_{v}}}{m_{u}+m_{v}}
$$

where m_{u} is the number of edges of G lying closer to the vertex u than to the vertex v. The fourth member of this class was considered by A. R. Ashrafi et al. [10] as

$$
G A_{4}(G)=\sum_{u v \in E} \frac{2 \sqrt{\varepsilon(u) \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)},
$$

in which eccentricity of vertex u denoted by $\varepsilon(u)$. Recently Furtula et al. ${ }^{11}$ introduced atom-bond connectivity ($A B C$) index, which it has been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. This index is defined as follows:

$$
A B C(G)=\sum_{e=u v \in E(G)} \sqrt{\frac{d_{\mathrm{G}}(u)+d_{G}(v)-2}{d_{\mathrm{G}}(u) d_{G}(v)}} .
$$

Through this paper our notations are standard and mainly taken from graph theory book such as $[12,13]$ and [14-41].

2. Main results and discussions

In this section, we compute these topological indices for an infinite family of nanostar dendrimers G_{n} shown in Fig. 1.

Lemma 1. Consider the nanostar dendrimer G_{n} Then, for $0 \leq i \leq 9 n-5$ we have

$$
\varepsilon\left(v_{i}\right)=18 n-10-i .
$$

Proof. It is easy to see that the diameter of graph G_{1} is 8. This value for G_{2} is $3 \times 8+2$. By induction one can deduce that the diameter of G_{n} is $8(2 n-1)+(2 n-2)=18 \mathrm{n}-$ 10. Since $\varepsilon\left(v_{0}\right)=18 n-10$, then $\varepsilon\left(v_{1}\right)=18 n-10-1$ and so $\varepsilon\left(v_{i}\right)=18 n-10-i(0 \leq i \leq 9 n-5)$. Now by using the symmetry of graph the proof is completed.

Fig. 1. $2-D$ Graph of Nanostar Dendrimer $G_{n}, n=3$.

Theorem 2.

$\xi\left(G_{n}\right)=\sum_{i=0}^{n-2} 3 \times 2^{n-i-2}\left(6 \sum_{j=0,3} A_{i, j}+8 \sum_{j=1,2} A_{i, j}+3 \sum_{j=4,5,5,9} A_{i, j}+4 \sum_{j=6, i} A_{i, j}-36 n+20\right)+405 n-120$ where $A_{i, j}=18 n-10-10 i-j$.

Theorem 3.

$$
\begin{aligned}
G A_{4}\left(G_{n}\right) & =\sum_{i=0}^{n-2}\left(3 \times 2^{n-i-2}\right)\left(4 \sum_{j=0}^{2} A_{i, j}+2 \sum_{j=3,5,6,6} A_{i, j}+\sum_{j=4,8} A_{i, j}\right) \\
& +6 \sum_{i=1}^{3} \frac{2 \sqrt{(9 n-i)(9 n-i-1)}}{18 n-2 i-1}+6 \frac{\sqrt{(9 n-4)(9 n-5)}}{18 n-9}
\end{aligned}
$$

where

$$
A_{i, j}=\frac{2 \sqrt{(18 n-10-9 i-j)(18 n-11-9 i-j)}}{36 n-21-18 i-2 j} .
$$

Proof. It should be noted that in the i 'th level of graph G_{n} there exist $3 \times 2^{i-2}$ copy of G_{1}. By substitution values of $\varepsilon(u)$ in Lemma 1 in terms of $G A_{4}$ the proof is clear.

Corollary 4.

$$
\begin{aligned}
A B C_{3}\left(G_{n}\right) & =\sum_{i=0}^{n-2}\left(3 \times 2^{n-i-2}\right)\left(4 \sum_{j=0}^{2} A_{i, j}+2 \sum_{j=3,5,6,7} A_{i, j}+\sum_{j=4,8} A_{i, j}\right) \\
& +6 \sum_{i=1}^{3} \frac{\sqrt{18 n-2 i-3}}{(9 n-i)(9 n-i-1)}+3 \frac{\sqrt{18 n-11}}{(9 n-4)(9 n-5)},
\end{aligned}
$$

where

$$
A_{i, j}=\frac{\sqrt{36 n-23-18 i-2 j}}{(18 n-10-9 i-j)(18 n-11-9 i-j)}
$$

References

[1] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[2] V. Sharma, R. Goswami, A. K. Madan, J. Chem. Inf. Comput. Sci., 37, 273 (1997).
[3] H. Dureja, A. K. Madan, Med. Chem. Res., 16, 331 (2007).
[4] V. Kumar, S. Sardana, A. K. Madan, J. Mol. Model., 10, 399 (2004).
[5] S. Gupta, M. Singh, A. K. Madan, J. Math. Anal. Appl., 266, 259 (2002).
[6] S. Sardana, A. K. Madan, MATCH Commun. Math. Comput. Chem., 43, 85 (2001).
[7] D. Vukičević, B. Furtula, J. Math. Chem., 46, 1369 (2009).
[8] G. Fath-Tabar, B. Furtula, I. Gutman, J. Math. Chem., in press.
[9] B. Zhou, I. Gutman, B. Furtula, Z. Du, Chem. Phys. Lett., 482, 153 (2009).
[10] A. R. Ashrafi, M. Ghorbani, Optoelectron. Adv. Mater. - Rapid Commun., (Submitted).
[11] B. Furtula, A. Graovac, D. Vukičević, Disc. Appl. Math., 157, 2828 (2009).
[12] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL (1992).
[13] D. B. West, Introduction to Graph theory, Prentice Hall, Upper Saddle River, 1996.
[14] M. Ghorbani, Optoelectron. Adv. Mater. - Rapid Commun., 4(2), 261, 2010.
[15] A. R. Ashrafi, M. Saheli, M. Ghorbani, Journal of Computational and Applied Mathematics, http://dx.doi.org/10.1016/j.cam.2010.03.001.
[16] A. R. Ashrafi, H. Saati, M. Ghorbani, Digest Journal of Nanomaterials and Biostructures, 3(4), 227 (2008).
[17] A. R. Ashrafi, M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 3(4), 245 (2008).
[18] M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 3(4), 269 (2008).
[19] A. R. Ashrafi, M. Ghorbani, Digest Journal of Nanomaterials and Biostructures, 4(2), 313 (2009).
[20] A. R. Ashrafi, M. Ghorbani, M. Hemmasi, Digest Journal of Nanomaterials and Biostructures, 4(3), 483 (2009).
[21] A. R. Ashrafi, M. Ghorbani, Digest Journal of Nanomaterials and Biostructures, 4(2), 389 (2009).
[22] M. Ghorbani, M. B. Ahmadi, M. Hemmasi, Digest Journal of Nanomaterials and Biostructures, 3(4), 269 (2009).
[23] M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 4(1), 177 (2009).
[24] M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 4(3), 403 (2009).
[25] A. R. Ashrafi, M. Ghorbani, M. Jalali, Optoelectron. Adv. Mater. - Rapid Commun., 3(8), 823 (2009).
[26] A. R. Ashrafi, M. Ghorbani, Optoelectron. Adv. Mater. - Rapid Commun., 3(6), 596 (2009).
[27] M. A. Hosseinzadeh, M. Ghorbani, Optoelectron. Adv. Mater. - Rapid Commun., 11(11), 1671 (2009).
[28] M. Ghorbani, A. R. Ashrafi, M. Hemmasi, Optoelectron. Adv. Mater. - Rapid Commun., 3(12), 1306 (2009).
[29] M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 4(4), 681 (2009).
[30] M. Ghorbani, Optoelectron. Adv. Mater. - Rapid Commun., 4(2), 261 (2010).
[31] M. A. Hosseinzadeh, M. Ghorbani, Optoelectron. Adv. Mater. - Rapid Commun., 4(3), 378 (2010).
[32] M. Ghorbani, M. Jaddi, Optoelectron. Adv. Mater. Rapid Commun., 4(4), 540 (2010).
[33] H. Maktabi, J. Davoudi, M. Ghorbani, Optoelectron. Adv. Mater. - Rapid Commun., 4(4), 550 (2010).
[34] M. Ghorbani, H. Hosseinzadeh, Optoelectron. Adv. Mater. - Rapid Commun., 4(4), 538 (2010).
[35] M. Faghani, M. Ghorbani, MATCH Commun. Math. Comput. Chem., 65, 21 (2010).
[36] M. Ghorbani, MATCH Commun. Math. Comput. Chem., 65, 183 (2010).
[37] M. Ghorbani, M. Ghazi, S. Shakeraneh, Optoelectron. Adv. Mater. - Rapid Commun., 4(6), 893 (2010).
[38] M. Ghorbani, M. Ghazi, S. Shakeraneh, Optoelectron. Adv. Mater. - Rapid Commun., 4(7), 1033 (2010).
[39] A. Azad, M. Ghorbani, Optoelectron. Adv. Mater. Rapid Commun., 4(7), 1261 (2010).
[40] H. Mesgarani, M. Ghorbani, Optoelectron. Adv. Mater. - Rapid Commun., 4(7), 1264 (2010).
[41] M. Ghorbani, A. Azad, M. Ghasemi, Optoelectron. Adv. Mater. - Rapid Commun., 4(7), 1268 (2010).
*Corresponding author: mghorbani@srttu.edu

